Autonomes Fahren: Schnelleres und effektiveres Szenenverständnis durch Deep Learning

Bildquelle: www.next-mobility.news

Eine neue Methoden des Deep Learnings soll die Wahrnehmung der Umgebung von selbstfahrenden Fahrzeugen signifikant verbessern.

Auf der Website des Projekts finden sich Beispiele dafür, wie das Team verschiedene KI-Modelle auf verschiedenen Datensätzen trainiert hat. Die Ergebnisse werden dem jeweiligen mit der Kamera aufgenommenen Bild überlagert, wobei die Farben zeigen, welcher Objektklasse das Modell das jeweilige Pixel zuordnet. So sind zum Beispiel Autos blau, Menschen rot, Bäume grün und Gebäude grau markiert.

Darüber hinaus zeichnet das KI-Modell auch einen Rahmen um jedes Objekt, das es als separate Einheit betrachtet. Den Freiburger Forschenden ist es gelungen, das Modell so zu trainieren, dass es die gelernten Informationen städtischer Szenen von Stuttgart nach New York City überträgt. Obwohl das KI-Modell nicht wusste, wie eine Stadt in den USA aussehen könnte, war es in der Lage, Szenen aus New York City genau zu erkennen.

Die meisten bisherigen Methoden, die sich diesem Problem widmen, benötigen große Datenmengen und sind für den Einsatz in realen Anwendungen wie der Robotik, die stark ressourcenbeschränkt sind, zu rechenintensiv

Keine News mehr verpassen!

Quelle: www.next-mobility.news